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Discontinuous Constituency Trees: Example

I Task: predict (potentially) discontinuous constituency trees

ROOT

S

NP

PPER

Es

NP

PIAT

nichts

NN

Interessantes

VVFIN

kam

PROAV

trotzdem

$.

.

It nothing interestinghappened but (litterally)

I Translation: But nothing interesting happened (Negra
Corpus)
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Discontinuous Constituency Trees: What for?

Wide range of phenomena

I Long distance extractions: some relative clauses, questions

I Dislocations

I Cross serial dependencies

Syntactical discontinuities are rather frequent

I languages with some degree of word order flexibility: 30% of
sentences in German treebanks (Maier and Lichte, 2009)

I configurational languages: 20% of sentences in Discontinuous
Penn Treebank (Evang and Kallmeyer, 2011)

Annotation strategies:

I Use empty categories (traces), coindexation (PennTB)

I Use crossing branches (Negra, Tiger) → Discontinuous trees
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Discontinuous Parsing

Standard constituency parsing focused on projective trees

I remove traces/empty categories: too hard

I projectivize trees

Approaches to discontinuous parsing

I Probabilistic grammar, CKY-like decoding
I exact parsing has high polynomial complexity O(n3f )
I does not scale to full corpora
I limited accuracy

I Transition based methods
I Easy first (Versley, 2014), Swap action (Maier, 2015)
I faster, scalable

I Reduction to dependency parsing
I Fernández-González and Martins (2015), Hall and Nivre (2008)
I tree conversion from const to dep
I most successful approach so far
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Contributions

I New transition system for discontinuous constituency parsing
Shift-Reduce+Gap

I Approximate parsing (drop grammaticality constraints)
I Efficient (linear time parsing)
I State-of-the-art results on 2 German treebanks with a

perceptron

I Empirical comparison with previous best transition system
(Shift-Reduce+Swap; Maier, 2015)

5 / 45



Outline

Introduction

Transition based parsing

The gap transition

Experiments

Discussion: Gap vs Swap

6 / 45



Transition-based Parsing: Standard Shift-Reduce
I Syntactic tree equivalent to a sequence of actions
I Classifier to predict actions
I Configuration = (Stack, Buffer)

I Stack contains tree nodes
I Buffer contains tokens

I Use actions to derive new configurations until the stack
contains a single tree and the buffer is empty

Cats

NNS

can

MD

meow

VB

Stack Buffer

Cats can meow

NNS MD VB

NP VP

VP

S
Stack Buffer

Actions

Start configuration Terminal configuration
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Transition-based Parsing: Standard Shift-Reduce

. . . s1 s0 b0 b1
. . .

Stack Buffer
. . . s1 s0 b0 b1

. . .

Stack BufferShift

. . . s2 s1 s0 b0
. . .

Stack Buffer
. . . s2 X

s1 s0

b0
. . .

Stack BufferReduce-X

I si , bi index elements in stack and buffer

I Reduce-Left-X, Reduce-Right-X for each non-terminal X
I Left/right: assign the head of the new constituent

I useful because features use heads of constituents
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Extending the Shift-Reduce algorithm

Standard shift-reduce: reductions apply to the 2 topmost elements
in the stack:

s0s1s2s3. . .

* *

Reduce-X

. . . s3 s2 X

s1 s0

→ can only derive projective trees

To handle discontinuities, allow reductions with s0 and any other
symbol in the stack. Side effect: implicitly reordering terminals

s0s1s2s3. . .

* *

Reduce-X

. . . s3 s1 X

s2 s0
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Shift-Reduce+Gap

I GAP action: access next non-terminal in the stack for a
potential reduction

I Choose dynamically which element in the stack is used for a
reduction

s0s1s2s3s4. . .

?

* *
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Shift-Reduce+Gap

The usual stack is split into 2 parts:

I A Stack S (bottom part)

I A Deque D (upper part)

I Reductions are always applied to s0 and d0

I (The buffer is still a buffer)
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The Gap transition: Stack Deque Buffer

Projective case: s0 and d0 are the 2 topmost elements

x6 x5 x4 x3 x2 x1 x0

**

. . .

13 / 45



The Gap transition: Stack Deque Buffer

After 1 Gap

x6 x5 x4 x3 x2 x1 x0

**

. . .
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The Gap transition: Stack Deque Buffer

After 2 Gaps (Can gap as long as length of S is > 1)

x6 x5 x4 x3 x2 x1 x0

**

. . .
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The Gap transition: Stack Deque Buffer

Reduction: pick s0 and d0

x6 x5 x4 x3 x2 x1 x0

**

. . .

X
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The Gap transition: Stack Deque Buffer

Reduction to X: create new node

x6 x5 x4 x2 x1

x3 x0

. . .X
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The Gap transition: Stack Deque Buffer

Reduction to X: flush D to S

x6 x5 x4 x2 x1

x3 x0

. . .X
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The Gap transition: Stack Deque Buffer

Reduction to X: push new node to D

x6 x5 x4 x2 x1

x3 x0

. . .X
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The Gap transition: Stack Deque Buffer

Now, top of S is x1 and top of D is X

x6 x5 x4 x2 x1

x3 x0*

. . .X

*
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Transition-based Parsing: Shift-Reduce+Gap

I Configuration = (Stack, Deque, Buffer)
I Initial configuration = (∅, ∅, [w1,w2 . . .wn])
I Final configuration = (∅, [A], ∅)

I A = axiom

Transition set

From To

Shift (S, D, b0|B) (S|D, [b0], B)
Reduce-Left/Right(X) (S|s0, D|d0, B) (S|D, [X], B)
Gap (S|s0, D, B) (S, s0|D, B)

Let’s see a full example . . .
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Shift-Reduce-Gap : Stack – Deque – Buffer
Initialisation [phrase from DPTB, Evang and Kallmeyer, 2011]

NP

NP

JJ

lucid

NNS

explanations

PP

IN

of

SBAR@S

VP

WHADVP

WRB

how

VBP

work

NP

NNS

computers

15 / 45



Shift-Reduce-Gap : Stack – Deque – Buffer
Shift

NP

NP
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NNS

explanations

PP

IN

of

SBAR@S

VP

WHADVP

WRB

how

VBP

work

NP

NNS

computers

Sh

16 / 45



Shift-Reduce-Gap : Stack – Deque – Buffer
Shift
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Shift-Reduce-Gap : Stack – Deque – Buffer
Reduce-NP

NP

NP*

JJ

lucid

NNS
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IN

of
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VP
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Shift-Reduce-Gap : Stack – Deque – Buffer
ReduceUnary-WHADVP
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Shift-Reduce-Gap : Stack – Deque – Buffer
ReduceUnary-NP
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Shift-Reduce-Gap : Stack – Deque – Buffer
Gap
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Shift-Reduce-Gap : Stack – Deque – Buffer
Reduce-VP
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Shift-Reduce-Gap : Stack – Deque – Buffer
Reduce-S
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Sh, Sh, R(NP), Sh, Sh, RU(WHADVP), Sh, RU(NP), Sh, Gap, R(VP),

R(S)
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Shift-Reduce-Gap : Stack – Deque – Buffer
Reduce-PP
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Shift-Reduce-Gap : Stack – Deque – Buffer
Reduce-NP
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R(S), R(PP), R(NP)
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Some properties of Shift-Reduce+Gap

I Derives any labelled discontinuous tree over a set of
non-terminal symbols

I handles well-nested and ill-nested trees

I With some (easily checked) constraints on actions: always
outputs a tree

I Longest derivation for a sentence of size n is in O(n2)
I In practice, parsing in linear time: limited number of

discontinuities in datasets

I Related to Covington’s (2001) non-projective dependency
parsing algorithm

I transition system with 3 data structures (Gómez-Rodŕıguez
and Fernández-González, 2015)
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Experiments: Data

I 2 German corpora:
I Tiger Corpus (Brants et al., 2002), ≈ 50000 sentences
I Negra Corpus (Skut et al., 1997), ≈ 20000 sentences

I Both were natively annotated with discontinuous constituents

I ≈ 30% of sentences contain at least one discontinuity

I Preprocessing
I Head annotation with headrules
I Head-outward binarization (+ order-0 Markovization)
I Reattach punctuation locally (avoid spurious discontinuity)

I Assume tags are available (either gold or predicted)
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Experiments: Classifier

I Deterministic oracle to transform gold trees to gold sequences
of actions

I Simple averaged structured perceptron
I Beam search
I Early update

I Perceptron is biased towards longer derivations
I padding derivations with IDLE actions (Zhu et al., 2013) to

improve comparability between derivations in the beam

I C++ implementation : github.com/mcoavoux/mtg

I Scalable to full corpora, 4700 tokens/s with beam size = 4
I Tree structured stack (TSS) for compact representation of

beam
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Experiments: Feature templates
3 sets of feature templates

I Baseline, 40 templates: standard features for a projective
constituency parser (Zhu et al., 2013)

I +Extended, 52 templates: adds information about
I gapped elements (d1, d2)
I extended context (s3)

I +Spans, 87 templates: adds information about constituent
boundaries (Hall et al., 2014)

I e.g. leftmost/rightmost terminal spanned by s0, etc..
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Experiments: Results (Gold POS) – Internal comparisons

Disc. F1 : discontinuous constituents only. Evaluator: discodop (Van Cranenburgh et al., 2016)

Beam size TigerHN8 (dev)
Gap, +Spans F1 Disc. F1

2 81.86 48.49
4 83.27 53.00
8 83.61 54.42

16 83.84 54.81
32 84.32 56.22
64 84.14 56.01

128 84.05 55.76

I Beam size helpful for disc. constituents. From 2 to 32:
I + 8 for discontinuous constituents
I + 3 for all constituents
I Search compensates for lack of global view
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Experiments: Results (Gold POS) – Internal comparisons

Test TigerHN08 Improvement over baseline

Beam = 4 F1 Disc. F1 F1 Disc. F1

Shift-Reduce+Gap, Baseline 81.67 44.83
Shift-Reduce+Gap, +Extended 82.43 48.81 + 0.7 + 4.0
Shift-Reduce+Gap, +Spans 83.16 49.76 + 1.4 + 4.9

I +Extended: information about content of gap is useful
especially for discontinuities

I +Spans: information about constituent boundaries is useful
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Experiments: Results (Gold POS) – External comparisons

Comparison with chart parsers

I CKY-like decoding

I Kallmeyer and Maier (2013): Probabilistic LCFRS

I Van Cranenburgh et al. (2016): DOP model

Negra
sentence length F1

Kallmeyer and Maier, 2013 ≤ 30 75.8
Van Cranenburgh et al., 2016 ≤ 40 76.8
Shift-Reduce+Gap, beam=32 All 82.16
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Experiments: Results (Gold POS) – External comparisons

Comparison with transition based parsers

I Maier 2015: extends shift-reduce with swap action
I Swap: push 2nd element of stack back onto the buffer

(adapted from d-parsing)
I Same setting as ours: global perceptron with beam search

Tiger
beam size F1 Disc. F1

Maier 2015 4 74.71 18.8
Maier and Lichte 2016 4 76.46 16.3
Shift-Reduce+Gap 4 80.40 46.5
Shift-Reduce+Gap 32 81.60 49.2
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Experiments: Results (Gold POS) – External comparisons

Comparison with dependency parsing based methods

Fernández-González and Martins (2015) Parsing as Reduction

1. Convert trees to (non-projective) dependency trees

2. Parse with dependency parser

3. Convert result to discontinuous constituency trees

Gold POS Predicted POS
Negra TigerHN8 TigerSPMRL TigerSPMRL

FeMa2015 80.5 84.2 80.6 77.3
SR+Gap 82.2 84.0 81.5 79.3
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Discussion: Gap vs Swap

Swap and Gap

I both extensions of shift-reduce

I both O(n2)

I but rather large difference in accuracies (in comparable
experimental settings).

Why?

I Main hypothesis: Shift-Reduce+Gap tends to produce much
shorter derivations (easier to learn)
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Discussion: Gap vs Swap

Swap action: push the second element of the stack back onto the
buffer. (It must be a terminal)

. . . s2 s1 s0 b0
. . .

Stack Buffer
. . . s2 s0 s1 b0

. . .

Stack BufferSwap

Swap transition system (Maier, 2015) uses 2 usual data structures
(stack + buffer).
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Discussion: Derivation Length

We expect the Gap transition system to produce shorter
derivation than Swap in general.

1. Each swapped terminal must be shifted again (and might be
reswapped and reshifted if need be)

2. Both systems are implicitly predicting a reordering of
terminals that would make a tree projective

I Swap terminals only → reordering terminals not efficient
I Can gap whole subtrees → reordering more efficient
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Discussion: Derivation Length

Some measures on the Tiger corpus (train) using an oracle:

SR+Gap SR+Swap

Average derivation length wrt n 2.03n 3.09n
Longest derivation 276 2187
Total number of gaps/swaps 64096 411970
Max consecutive gaps/swaps 10 69
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Conclusion

Summary

I New transition system for efficient and accurate discontinuous
parsing

I State-of-the-art results on German treebanks

Perspectives

I Application to other languages (English, French) and other
types of linguistic discontinuities (MWE?)

I bi-LSTM encoder (Cross and Huang, 2016)

I Dynamic oracle?

I Relationship to LCFRS automata?
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https://github.com/mcoavoux/mtg/
mcoavoux@linguist.univ-paris-diderot.fr

Thanks!

Comments? Questions?
Thanks to Chloé Braud, Héctor Mart́ınez Alonso, Djamé Seddah,

Olga Seminck
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Transition System
Input t1[w1]t2[w2] . . . tn[wn]

Axiom 〈ε, ε, t1[w1]t2[w2] . . . tn[wn]〉

Goal 〈ε,S [w ], ε〉

Shift
〈S ,D, t[w ]|B〉
〈S |D, t[w ],B〉

Reduce-Unary(X)
〈S , d0[h],B〉
〈S ,X [h],B〉

Reduce-Right(X)
〈S |s0[h],D|d0[h′],B〉
〈S |D,X [h′],B〉

Reduce-Left(X)
〈S |s0[h],D|d0[h′],B〉
〈S |D,X [h],B〉

Gap
〈S |s0[h],D,B〉
〈S , s0[h]|D,B〉
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Experiments: Results with predicted pos

TigerM15 F1 (spmrl.prm)
≤ 70 All

Versley (2014), EasyFirst 73.90 -
Fernández-González and Martins (2015) 77.72 77.32
sr-gap, beam=32, +Spans 79.44 79.26
sr-gap, greedy, bi-lstms, own tagging 82.22

I + 3 over structured perceptron
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Relationship to dependency parsing

Shift-Reduce+Gap is related to Covington’s (2001) (family of)
algorithm(s) for unrestricted dependency parsing

Algorithm 1 Covington’s algorithm for d-parsing O(n2)

1: for i = 1 to n do
2: for j = i − 1 downto 1 do
3: link(i,j)
4: end for
5: end for

Link(i,j): either add arc i → j , or arc j → i or do nothing.

I Can be formulated as a transition system with 3 data
structures

46 / 45



Binarization (sentence from Tiger)
S

NP

NP

PPER VVFIN ADV ADJA NN

Es bestünde somit hinreichender Spielraum

S

S:*

NP

NP*

PPER VVFIN* ADV ADJA NN*

Es bestünde somit hinreichender Spielraum

* indicates head percolation
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